
El panorama de la ciberseguridad ha cambiado drásticamente con la llegada de
la IA generativa. Los atacantes ahora utilizan grandes modelos de lenguaje
(LLM) para suplantar la identidad de personas de confianza y automatizar estas
tácticas de ingeniería social a gran escala.
Revisemos el estado de estos ataques en aumento, qué los impulsa y cómo
prevenirlos, no detectarlos.
La persona con más poder en la llamada podría no ser real
Informes recientes de inteligencia de amenazas destacan la creciente
sofisticación y prevalencia de los ataques impulsados por IA:
En esta nueva era, la confianza no se puede dar por sentado ni simplemente
detectar. Debe demostrarse de forma determinista y en tiempo real.
Por qué crece el problema
Tres tendencias convergen para convertir la suplantación de identidad mediante
IA en el próximo gran vector de amenaza:
-
La IA abarata y escala el engaño: Con herramientas de voz y video de
código abierto, los actores de amenazas pueden suplantar la identidad de
cualquier persona con solo unos minutos de material de referencia. -
La colaboración virtual expone las brechas de confianza: Herramientas
como Zoom, Teams y Slack asumen que la persona detrás de una pantalla es
quien dice ser. Los atacantes explotan esta suposición. -
Las defensas generalmente se basan en la probabilidad, no en la
prueba:
Las herramientas de detección de deepfakes utilizan marcadores faciales y
análisis para adivinar si alguien es real. Esto no es suficiente en un
entorno de alto riesgo.
Y aunque las herramientas de endpoints o la capacitación de usuarios pueden
ayudar, no están diseñadas para responder a una pregunta crucial en tiempo
real: ¿Puedo confiar en esta persona con la que estoy hablando?
Las tecnologías de detección de IA no son suficientes
Las defensas tradicionales se centran en la detección, como capacitar a los
usuarios para detectar comportamientos sospechosos o usar IA para analizar si
alguien es falso. Pero los deepfakes se están volviendo demasiado efectivos,
demasiado rápido. No se puede combatir el engaño generado por IA con
herramientas basadas en probabilidades.
La prevención real requiere una base diferente, basada en la confianza
demostrable, no en suposiciones. Esto significa:
-
Verificación de identidad: Solo los usuarios verificados y
autorizados deberían poder unirse a reuniones o chats confidenciales con
credenciales criptográficas, no con contraseñas ni códigos. -
Comprobación de la integridad del dispositivo: Si el dispositivo de
un usuario está infectado, liberado o no cumple con las normas, se convierte
en un punto de entrada potencial para los atacantes, incluso si su identidad
está verificada. Bloquee estos dispositivos de las reuniones hasta que se
solucionen. -
Indicadores de confianza visibles: Los demás participantes necesitan
ver pruebas de que cada persona en la reunión es quien dice ser y utiliza un
dispositivo seguro. Esto elimina la carga de juicio de los usuarios finales.
Prevenir significa crear condiciones donde la suplantación de identidad no
solo sea difícil, sino imposible. Así es como se detienen los ataques deepfake
de IA antes de que se involucren en conversaciones de alto riesgo, como
reuniones de directorio, transacciones financieras o colaboraciones con
proveedores.
Enfoque basado en la detección | Enfoque de prevención |
Marcar anomalías después de que ocurran | Bloquear el acceso de usuarios no autorizados |
Confiar en la heurística y las conjeturas | Usar prueba criptográfica de identidad |
Requerir el criterio del usuario | Proporcionar indicadores de confianza visibles y verificados |
Fuente:
THN